Logo
New supercapacitor technologies
We develop innovative nano-porous materials and assemblies employed in varied sensing, optical, and electronic applications. Specifically, we introduced technologies for creating conductive gold nanopatterns through self-reduction of Au-thiocyanate. We have demonstrated new porous electrodes and supercapacitors for high frequency applications and high power/energy densities. Diverse sensor designs, operating through optical and capacitive transduction mechanisms, have been developed.
SUPERCAPACITORS
Organic and metallic supercapacitor electrodes and full devices have been fabricated, aimed at addressing the main challenges in the field: attaining high power density and energy density, and operating in high frequencies. We demonstrated varied electrode designs exhibiting exceptional electrochemical properties; in particular we showed that, contrary to the accepted paradigm, the rate of redox reactions at the electrode interface is not a limiting factor for achieving high frequency capacitive performance.
RECENT PUBLICATIONS
-
A focused ion beam-fabricated high-performance electrodeposited nickel-ruthenium-ruthenium oxide nano-supercapacitor, Sudipta Biswas, Ahiud Morag, Nitzan Shauloff, Nitzan Maman, Raz Jelinek, J. Mater. Chem. A, 2024, 12, 20887.
-
Tungsten-disulfide / polyaniline high frequency supercapacitors, Amrita De Adhikari, Nitzan Shauloff, Yury Turkulets, Ilan Shalish, Raz Jelinek, Advanced Electronic Materials, 2021, 7, 2100025.
-
Nickel Alloying Significantly Enhances the Power Density of Ruthenium-Based Supercapacitors, Ahiud Morag, Nitzan Shauloff, Nitzan Maman, Natalya Froumin, Vladimir Ezersky, Raz Jelinek, Batteries & Supercaps, 2020,3, 946-952.
-
Polydiacetylene-perylenediimide supercapacitor, A. De Adhikari, A. Morag, J. Seo, J.-M. Kim, Raz Jelinek, ChemSusChem, 2020, 13, 3230.
-
Nanostructured Nickel/Ruthenium/Ruthenium-Oxide Supercapacitor Operating at Very High Frequencies, Ahiud Morag, Nitzan Maman, Natalya Froumin, Vladimir Ezersky, Katya Rechav, Raz Jelinek, Advanced Electronic Materials, 2019, 1900844.
-
Flexible asymmetric micro-supercapacitors from freestanding hollow nickel microfiber electrodes, Ahiud Morag and Raz Jelinek, Advanced Electronic Materials, 2019, 5, 1800584.
-
Carbon nanomaterials in biological studies and biomedicine",Nagappa Teradal, Raz Jelinek, Advanced Healthcare Materials, 2017, 6, 1700574.
-
Porous Au nanotubes for enhanced methanol oxidation catalysis", Xiuxiu Yin, Nagappa Teradal, Raz Jelinek, ChemistrySelect, 2017, 2, 10961-10964.
-
Freestanding Gold/Graphene-Oxide/MnO2 Microsupercapacitor Displaying High Areal Energy Density", Ahiud Morag, James Becker, Raz Jelinek, ChemSusChem, 2017, 10, 2736-2741.
-
Catalytic Au “nano-wool balls", Xiuxiu Yin, Nagappa Teradal, Ahiud Morag, Raz Jelinek, ChemCatChem, 2017, 9, 2473-2479.
-
”Bottom-up” transparent electrodes, Ahiud Morag, Raz Jelinek, Journal of Colloids and Interface Science, 2016, 482, 267-289.
-
High surface area electrodes by template-free self-assembled hierarchical porous gold architecture, A. Morag, T. Golub, J. Becker, Raz Jelinek, Journal of Colloids and Interface Science, 2016, 472, 84-89.
-
Directed self-assembly of graphene oxide on an elecrtospun polymer fiber template, TP Vinod, X. Yin, J. Jopp, Raz Jelinek, Carbon, 2015, 95, 888-894.
-
Enhanced Photocatalysis by Hybrid Au/ZnO Nanoparticles Assembled Through a One-Pot Method, J. Manna, TP Vinod, K. Flomin, Raz Jelinek, Journal of Colloids and Interface Science, 2015, 460, 428-434.
-
Single-step assembly of large-area, transparent conductive patterns induced through edge adsorption of template-confined Au-thiocyanate, Xiuxiu Yin, T. P. Vinod, Dimitry Mogiliansky, Raz Jelinek, Advanced Materials Interfaces, 2015, 2, 1400430.
-
Transparent, conductive polystyrene in three dimensional configurations, Alexander Trachtenberg, T.P. Vinod, Raz Jelinek, Polymer, 2014, 55, 5095-5101.
-
Flexible conductive surfaces via "bottom-up" gold nanotechnology, T.P. Vinod and Raz Jelinek, ACS Applied Materials and Interfaces, 2014, 6, 3341-3346.
-
Nonplanar Conductive Surfaces via “Bottom-Up” Nanostructured Gold Coating, T. P. Vinod, Raz Jelinek, ACS Appl. Mater. Interfaces, 2014, 6 (5), 3341-3346.
-
Transparent, conductive gold nanowire network assembled from soluble Au thiocyanate, Ahiud Morag, Vladimir Ezersky, Natalya Froumin, Dimitry Mogiliansky, Raz Jelinek, Chem. Comm., 2013, 49 (76), 8552-8554.
-
Patterned transparent conductive Au films through direct reduction of gold thiocyanate, Ahiud Morag, Natalya Froumin, Dimitry Mogiliansky, Vladimir Ezersky, Edith Beilis, Shachar Richter, Raz Jelinek, Advanced Functional Materials, 2013, 23, 5663-5668.
SENSORS
We have developed varied sensor technologies, operating via different transduction mechanisms (optical, luminescent, capacitive) and aimed at different targets. Specifically, we designed gas sensors, demonstrating high sensitivity and selectivity towards specific volatile organic compounds (VOCs) and organophosphates. Optical sensors for pollutants in water have been developed. Innovative strain sensors have been also fabricated through different chemical platforms.
RECENT PUBLICATIONS
-
Porous graphene oxide-metal ion composite for selective sensing of organophosphate gases, Nitzan Shauloff, Nagappa Teradal, Raz Jelinek, ACS Sensors, 2020, 5, 6, 1573-1581.
-
Polydiacetylene hydrogel self-healing capacitive strain sensor, V. Kesava Rao, Nitzan Shauloff, XiaoMeng Sui, H. Daniel Wagner, Raz Jelinek, Journal of Materials Chemistry C, 2020, 8, 6034-6041.
-
Elastic Carbon Dot/Polymer Films for Fluorescent Tensile Sensing and Mechano-Optical Tuning, Nitzan Shauloff, Sagarika Bhattacharya, Raz Jelinek, Carbon, 2019, 152, 363-371. Featured on the journal cover.
-
Polydiacetylene capacitive artificial nose, V. Kesava Rao, Nagappa L. Teradal, Raz Jelinek, ACS Advanced Material and Interfaces, 2019, 11, 4470-4479.
-
“On/off/on” hydrogen-peroxide sensor with hemoglobin-functionalized carbon dots", Susanta Kumar Bhunia, Susmita Dolai, Hongchen Sun, Raz Jelinek, Sensors & Actuators: B. Chemical, 2018, 270, 223-230.
-
Carbon dot - porous silicon bimodal biosensor", Naama Massad-Ivanir, Susanta Kumar Bhunia, Ester Segal, Raz Jelinek, NPG Asia Materials, 2017, 10, e463.
-
Thenoyltrifluoroacetone (TTA)-Carbon Dot/Aerogel Fluorescent Sensor for Lanthanide and Actinide Ions", Susmita Dolai, Susanta Kumar Bhunia, Leila Zeiri, Ofra Paz-Tal, Raz Jelinek, ACS Omega, 2017, 2, 9288-9295.
-
Nitric oxide sensing through azo-dye formation on carbon dots", Sagarika Bhattacharya, Biswarup Chakraborty, Rhitajit Sarkar, Angel Porgador, Raz Jelinek, ACS Sensors, 2017, 2, 1215-1224.
-
Colorimetric Polydiacetylene-Aerogel Detector for Volatile Organic Compounds (VOCs), Susmita Dolai, Susanta Kumar Bhunia, Stella Beglaryan, Sofiya Kolusheva, Leila Zeiri, Raz Jelinek, ACS Advanced Materials and Interfaces, 2017, 9, 2891-2898.
-
In vitro reactive oxygen species (ROS) sensing by a carbon-dot-ascorbic acid hydrogel, Sagarika Bhattacharya, Rhitajit Sarkar, Sukhendu Nandi, Angel Porgador, Raz Jelinek, Analytical Chemistry, 2017, 89, 830-836.
-
”Porous graphene oxide chemi-capacitor vapor sensor array, Nagappa Teradal, Ahiud Morag, Sharon Marx, Raz Jelinek, Journal of Materials Chemistry C, 2017, 5, 1128-1135.
-
Conductive and SERS-active nano-crystalline gold film spontaneously assembled at a liquid/liquid interface, X. Yin, Y. Peretz, P.G. Oppenheimer, L. Zeiri, A. Masarwa, N. Froumin, Raz Jelinek, RSC Advances, 2016, 6, 33326-33331.
-
Flexible high-sensitivity piezoresistive sensor comprising of Au nanoribbon-coated polymer sponge, X. Yin, TP Vinod, Raz Jelinek, Journal of Materials Chemistry C, 2015, 3, 9247-9252.
-
Bacterial detection with amphiphilic carbon dots, Sukhendu Nandi, Margarita Ritenberg, Raz Jelinek, Analyst, 2015, 140, 4232-4237.
-
Transparent, conductive, and SERS-active Au nanofiber films assembled on an amphiphilic peptide template, T. P. Vinod, Shlomo Zarzhitsky, Ahiud Morag, Leila Zeiri, Yael Levi-Kalisman, Hanna Rapaport, Raz Jelinek, Nanoscale, 2013, 5, 10487-10493.